Model Selection for Kernel Probit Regression

نویسنده

  • Gavin C. Cawley
چکیده

The convex optimisation problem involved in fitting a kernel probit regression (KPR) model can be solved efficiently via an iteratively re-weighted least-squares (IRWLS) approach. The use of successive quadratic approximations of the true objective function suggests an efficient approximate form of leave-one-out cross-validation for KPR, based on an existing exact algorithm for the weighted least-squares support vector machine. This forms the basis for an efficient gradient descent model selection procedure used to tune the values of the regularisation and kernel parameters. Experimental results are given demonstrating the utility of this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Processes for Ordinal Regression

We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation algorithm respectively, are derived for hyperparameter learning and model selection. We compare t...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

Local Nonlinear Least Squares : Using Parametric Information

We introduce a new nonparametric regression estimator that uses prior information on regression shape in the form of a parametric model. In eeect, we nonparametrically encompass the parametric model. We obtain estimates of the regression function and its derivatives along with local parameter estimates that can be interpreted from within the parametric model. We establish the uniform consistenc...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007